حاصلضرب ماتریس ها

مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

تعریف ضرب ماتریس دو ماتریس: فرض کنیم ‎\(‎ A‎ = ‌‎[a_{ij}]_{m ‌‎\times ‎n} \)‌‌‎ و ‎\( B‎ =‎ [‎‎b_{ij}]_{n ‌‌‌‎\times k} ‌‎\)‎ ‏دو ماتريس ‏باشند. حاصلضرب ماتریس A در ماتریس B برابر با ماتریس ‎\( C‎ =‎ [‎ ‎c_{ij} ‎] ‌‌‌‎\)‌‎ از مرتبه \(m ‌‎\times k\) است که آن را با نماد ‎AB‌‏ نشان می‌دهیم و به صورت زیر تعریف می‌کنیم:

 ‌‎\( C_{ij} =‎ ‌‎\sum_{r=1}^‎{n} {‎a_{ir}b_{rj}} ‎ ‎\forall 1‎ ‌‎\leq i ‌‌‌‎\leq m‎ ,‎ 1‎ ‎\leq j‎ ‎\leq n ‌‌‌‎\)‌‎

تعریف ریاضی بالا بیان می‌کند، برای به دست آوردن درایه ijام ماتريس C کافی است، سطر iام ماتريس A را در ستون jام ماتريس B ضرب کنید. شکل زیر کمک شایانی به درک هرچه بهتر این موضوع خواهد نمود. 


مثال ۱. ضرب ماتریس زیر را به دست آورید.

۱. \( A = \begin{bmatrix}1 & -‎i‎ & 1 \\ i & 0 & 3 \\ 1 & 3 & 2 \end{bmatrix} \)‎ , \( B = \begin{bmatrix}0 & -‎i‎ & 2 \\ 5 & 0 & 3i \\ i+1 & 3 & 2 \end{bmatrix} \)‎

با توجه به تعریف بالا برای ضرب ماتریس‌ها داریم:

\( A.B= \begin{bmatrix}1 & -‎i‎ & 1 \\ i & 0 & 3 \\ 1 & 3 & 2 \end{bmatrix}\begin{bmatrix}0 & -‎i‎ & 2 \\ 5 & 0 & 3i \\ i+1 & 3 & 2 \end{bmatrix} \\ = \begin{bmatrix}1\times0-i\times 5 + 1\times (i+1) &1\times(-‎i)+0\times (-i)+1\times 3‎ & 1\times 2 +(-i)\times 3i + 1\times 2\\ i\times 0+0\times 5+3\times (i+1) & i\times (-i)+0+3\times 3 & i\times 2+0\times 3i+3\times 2 \\ 1\times 0+3\times 5+2\times (i+1) & 1\times (-i)+3\times 0+2\times 3 & 1\times 2+3\times 3i+2\times 2 \end{bmatrix} \)‎

\(= \begin{bmatrix}4i+1 & -‎i‎+3 & 4 \\ 3i+3 & 10 & 6+2i \\ 2i+17 & 6-i& 6+9i\end{bmatrix}\)


نکته ۱. زمانی می‌توانید ماتریس A‌‌‌‏ را در ماتریس B‌‌‎ ضرب کنید که تعداد ستون‌های ماتریس A‌‌‎ با تعداد سطرهای ماتریس B‌‌‎ برابر باشد.

از شکل بالا متوجه خواهید شد که دو ماتریس زیر قابل ضرب شدن نیستند، زیرا با توجه به تعریف ضرب ماتریسی حتما باید تعداد ستون‌های ماتریس اول با تعداد سطرهای ماتریس دوم برابر باشند.  


مثال ۲. حاصلضرب ماتریس‌های زیر را بدست آورید.

۱. ‎\( A = \begin{bmatrix}1 & 5 & 7 \\ 8 & 9 & 2 \end{bmatrix} , ‎B‎ = \begin{bmatrix}1 & 2 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}‎ \) ‌

    ⇒ \(AB= \begin{bmatrix}1 & 5 & 7 \\ 8 & 9 & 2 \end{bmatrix}\begin{bmatrix}1 & 2 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}‎\) = \(\begin{bmatrix}1 & 2+5+7 \\ 8 & 16+9+2 \end{bmatrix}\)  ⇒  \(\begin{bmatrix}1 & 14 \\ 8 & 27 \end{bmatrix}\)

۲. ‎\( A = \begin{bmatrix} 5 & 7 \end{bmatrix} , ‎B‎ = \begin{bmatrix} 8 & 9 \end{bmatrix} \)‎

با توجه به نکته ۱، باید تعداد ستون‌های ماتریس A با تعداد سطرهای ماتریس B یکسان باشد. اما همانطور که مشاهده می‌کنید تعداد ستون‌های ماتریس A برابر با ۲ و تعداد سطرهای ماتریس B برابر با ۱ می‌باشد. در نتیجه با توجه به نکته ۱، دو ماتریس فوق قابل ضرب شدن نمی‌باشند. 

۳. ‎\( A = \begin{bmatrix} 5 & 4 ‎\\ 2‎ &‎ ‎2‎ \end{bmatrix} , ‎B‎ = \begin{bmatrix} 1 & 2 ‎\\ 0‎ & ‎1‎ \end{bmatrix} \)‌‎

   ⇒ \( AB = \begin{bmatrix} 5 & 4 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 14\\ 2 & 6 \end{bmatrix}\)


تعریف توان یک ماتریس: ‏فرض کنید که ‌‏A‌‌‌‎ یک ماتریس\(‎ n ‌‌‌‎\times n ‌‌‌‎\)‌‌‏ باشد. در این صورت توان ‎k‌‏ام ماتریس A‎‎ به این معنی است که ‎ k‌‏بار‎ ماتریس A‌‌‎ را در خودش ضرب نمایید.

‎\(‎ A‎ ‎\times ‎... ‌‎\times A‎ =‎ ‎A^{k} ‌‎\) ‌‎


مثال ۳. توان سوم ماتریس مربعی زیر را به دست آورید. 

\(A= \begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}\)

\(A^3= A.A.A=\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix} = \begin{bmatrix} 1+4 & 2+4 \\ 2+4‎ &‎ ‎4+4‎ \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}\)

⇒ = \(\begin{bmatrix} 5 & 6 \\ 6 &‎ ‎8‎ \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}= \begin{bmatrix} 17 & 22 \\ 2‎2 &‎ ‎28‎ \end{bmatrix}\)


نکته ۲. دقت کنید که دو ماتریس مربعی هم مرتبه ‎A‌‏ و ‎B‌‌‏، نسبت به ضرب ماتریسی خاصیت جابه‌جایی ندارند.


مثال ۴. بررسی کنید که رابطه AB=BA نسبت به ضرب ماتریسی برقرار نمی‌باشد؟

برای این منظور کافی است که دو ماتریس مثال بزنید که این موضوع را نقض کند. دو ماتریس زیر را در نظر بگیرید:

\(A=\begin{bmatrix} 0 & 1 \\ 1 &‎ ‎1‎ \end{bmatrix} , B=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\)

 \(AB= \begin{bmatrix} 0 & 1 \\ 1 &‎ ‎1‎ \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix}0 & 1 \\ 1 & 2 \end{bmatrix}\)

 \(BA= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} =\begin{bmatrix} 1 & 2 \\ 1& 1\end{bmatrix}\)

در نتیجه ضرب ماتریسی دارای خاصیت جابه‌جایی نمی‌باشد.


تمرین. حاصلضرب ماتریس‌های زیر را در صورت امکان به دست آورید.

1. \( A=\begin{bmatrix} 5 & 1 & 0\\ 2 & 1 & 3 \end{bmatrix} , B= \begin{bmatrix} 8 & 1 \\ 1& 1\end{bmatrix}\)

۲. \( A=\begin{bmatrix} a & b \\ 2 & c \end{bmatrix} , B= \begin{bmatrix} 8 & 0 \\ 0 & 1 \\3 & q \end{bmatrix}\)

نظرات (0)

امتیاز 0 از 5 از بین 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (463)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (473)
فایل word نمونه سوال ریاضی پایه ششم فصل ...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ بازدید (565)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ بازدید (479)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ بازدید (486)
پاسخ تشریحی نمونه سوالات میانترم ریاضی م...

فایل های تصادفی

پاسخنامه پایانترم معادلات دیفرانسیل امیر کبیر (پلی تکنیک) شماره 1 پاسخنامه پایانترم معادلات دیفرانسیل امیر... بازدید (17734)
امتحان پایانترم معادلات دیفرانسیل شماره ...
جزوه کاربرد ریاضیات در شیمی دکتر علیمی دانشگاه صنعتی شریف 1394 جزوه کاربرد ریاضیات در شیمی دکتر علیمی د... بازدید (20101)
جزوه دست نویس کاربرد ریاضیات در شیمی دکت...
 نخستین درس در جبر مجرد فرالی، مقدمه و فهرست مطالب نخستین درس در جبر مجرد فرالی، مقدمه و ف... بازدید (18782)
فهرست مطالب و مقدمه کتاب نخستین درس در ج...
جزوه مبانی آنالیز ریاضی دکتر رستمی دانشگاه صنعتی امیرکبیر 93-94 جزوه مبانی آنالیز ریاضی دکتر رستمی دانشگ... بازدید (30341)
جزوه دست نویس درس مبانی آناایز ریاضی دان...
جزوه ریاضی 2 دانشگاه تبریز دکتر عبدی 96-1395 جزوه ریاضی 2 دانشگاه تبریز دکتر عبدی 96-... بازدید (11717)
جزوه ریاضی 2 دانشگاه تبریز دکتر عبدی 96-...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (89519)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41894)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (41372)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38885)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (36049)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
17292555

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا