جایگشت زوج و فرد

مقطع تحصیلی: عمومی

رای دهی: 4 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهغیر فعال سازی ستاره
 

جایگشت زوج و فرد: فرض کنیم ‎\( ‌‌‎\sigma ‌‎\)‎ ‏یک جایگشت بر روی مجموعه‌ S‌‌‎ باشد. جایگشت ‎\( ‌‌‌‎\sigma ‌‎\)‎، ‏را جایگشت زوج گویند، هرگاه تعداد کل انعکاس‌های جایگشت زوج باشد و جایگشت ‎\(\sigma ‌‎\)‎، ‏را جایگشت فرد می‌گویند، هرگاه تعداد کل انعکاس‌های آن فرد باشد. با توجه به زوج و فرد بودن یک جایگشت می‌توانیم تابع زیر را تعریف کنیم:

در اینصورت هرگاه یک جایگشت زوج باشد، تابع بالا عدد ۱ و هرگاه جایگشت فرد باشد، تابع عدد ۱- را اختیار می‌کند. مثال زیر نحوه تعیین علامت را برای تابع \(sgn\) به طور دقیق بیان می‌کند.


مثال ۱. علامت جایگشت‌های زیر را به دست آورید. 

۱.  \(\sigma_1=\begin{pmatrix}2&3&5\\3&5&2\\ \end{pmatrix}\)

برای تعیین این موضوع که این جایگشت، جایگشتی زوج یا فرد است، کافی است تعداد انعکاس‌های این جایگشت را محاسبه کنیم. برای این منظور کافی است با توجه به تعریف انعکاس جایگشت عمل کنیم. می‌دانیم که جایگشت بالا در واقع به صورت کامل زیر می‌باشد:

\(\sigma_1=\begin{pmatrix}2&3&5\\3&5&2\\ \end{pmatrix}=\begin{pmatrix}1&2&3&4&5\\1&3&5&4&2\\ \end{pmatrix}\)

حال کافی است که شرط انعکاسی را بررسی کنیم. ابتدا برای \(i=1\)، و هر \(j=2 , 3 , 4 , 5\)، می‌بینیم که شرط \(\sigma(1) >\sigma(j)\) برقرار نخواهد شد. برای \(i=2\)، و \(j=3 , 4 , 5\)، شرط انعکاسی تنها برای حالتی که \(j=5\) است برقرار خواهد شد. زمانی که \(i=3\) است برای هر \(j=4 , 5\) شرط انعکاسی همواره برقرار است. همچنین برای \(i=4 \) و \(j=5\) این شرط برقرار خواهد شد. در نتیجه تعداد کل انعکاس‌های این جایگشت چهار می‌باشد، لذا یک جایگشت زوج خواهد بود.

۲. \(\sigma_2\sigma_3=\begin{pmatrix}1&2&3&4&5&6&7\\7&5&6&2&1&3&4\\ \end{pmatrix}\begin{pmatrix}1&2&3&4&5\\2&3&4&5&1\\ \end{pmatrix}\)

برای تعیین این موضوع که جایگشت ترکیب این دو جایگشت زوج یا فرد است، می‌توانید از دو روش زیر عمل کنید:

روش اول. در این روش می‌توانید ترکیب این جایگشت‌ها را به دست آورید و در نهایت علامت جایگشت نهایی را محاسبه کنید. 

با توجه به اين كه جايگشت اول بر روي مجموعه‌ \(S=\{1 , 2 , 3 , 4 , 5 , 6 , 7\}\) مي‌باشد، جایگشت دوم را هم بر روی این مجموعه‌ تعریف می‌کنیم و به جای عناصری که از مجموعه‌ S در جایگشت دوم قرار ندارند، کافی است که فرض کنید آن جایگشت، اين اعداد را ثابت نگه می‌دارد و در اینصورت خواهیم داشت:  

\(\sigma_2\sigma_3=\begin{pmatrix}1&2&3&4&5&6&7\\7&5&6&2&1&3&4\\ \end{pmatrix}\begin{pmatrix}1&2&3&4&5&6&7\\2&3&4&5&1&6&7\\ \end{pmatrix} \)

حال عمل ترکیب اين دو جايگشت را محاسبه مي‌كنيم. مشاهده می‌کنید که \(\sigma_3\) عدد ۱ را به ۲ می‌برد و جایگشت \(\sigma_2\) عدد ۲ را به ۵ می‌برد، پس جایگشت ترکیب عدد ۱ را به ۵ می‌برد. دوباره تکرار می‌کنیم، اینبار برای عدد ۲ مشاهده می‌کنید که جایگشت \(\sigma_3\) این عدد را به ۳ میبرد و جایگشت \(\sigma_2\) عدد ۳ را به ۶ میبرد پس ترکیب این دو جایگشت عدد ۲ را به ۶ میبرد. با ادامه همین روال تا آخر جایگشت ترکیب به صورت زیر حاصل خواهد شد:

\(\sigma_2\sigma_3=\begin{pmatrix}1&2&3&4&5&6&7\\5&6&2&1&7&3&4\\ \end{pmatrix}\)

حال کافی است برای این جایگشت تعداد کل انعکاس‌ها را به شماریم. ابتدا برای \(i=1\) خواهیم دید که شرط انعکاس برای \(j=3, 4, 6 , 7\) برقرار است. برای \(i=2\) شرط انعکاس برای \(j=3 , 4 , 6 , 7\) برقرار است. برای \(i=3\) شرط انعکاس تنها برای \(j=4\) برقرار خواهد شد. برای \(i=4\) شرط انعکاس به ازای هیچ jای برقرار نخواهد بود. برای \(i=5\) شرط انعکاس برای \(j=6 , 7\)  برقرار است و برای \(i=6\) شرط انعکاس برقرار نخواهد بود. لذا مشاهده خواهید کرد که جایگشت بالا دارای 11 انعکاس می‌باشد، لذا جایگشتی فرد می‌باشد.

روش دوم. در این روش می‌توانید از تابع \(sgn\) استفاده کنید. برای این منظور هر کدام  جایگشت‌های \(\sigma_2\) و \(\sigma_3\) را از نظر زوج یا فرد بودن مشخص می‌کنید و با توجه به این که جایگشت زوج مقدار یک و جایگشت فرد مقدار منفی یک را اختیار می‌کرد خواهیم داشت:

  • ترکیب دو جایگشت زوج و زوج، زوج است. 
  • ترکیب دو جایگشت فرد و زوج، فرد است.
  • ترکیب دو جایگشت فرد و فرد، زوج است.

با توجه به این موضوع کافی است تعداد کل انعکاس‌های \(\sigma_2\) و \(\sigma_3\) را محاسبه کنید. به عنوان یک تمرین این موضوع را نشان دهید. 


تمرین ۱. علامت جایگشت‌های زیر را به دست آورید. 

۱. \(\sigma_1=\begin{pmatrix}1&2&3&4&5&6&7\\2&5&4&3&1&7&6\\ \end{pmatrix}\)

۲. \(\sigma_2 \sigma_3=\begin{pmatrix}2&3&4&5\\5&4&3&2\\ \end{pmatrix} \begin{pmatrix}1&2&3&4&5&6&7\\2&3&1&6&7&5\\ \end{pmatrix}\)

۳. \(\sigma_4=\begin{pmatrix}1&2&3&5\\5&3&1&2\\ \end{pmatrix}\)

نظرات (1)

امتیاز 0 از 5 از بین 0 رای
این نظر توسط مجری سایت به حداقل رسیده است

بسیاااااار عالی، هرچی بگم کم گفتم

علی
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (463)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (473)
فایل word نمونه سوال ریاضی پایه ششم فصل ...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ بازدید (565)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ بازدید (479)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ بازدید (486)
پاسخ تشریحی نمونه سوالات میانترم ریاضی م...

فایل های تصادفی

پاسخنامه تشریحی ریاضی عمومی ریاضی 1 مدیریت، آمار، جهانگردی و ... نیمسال دوم 90 - 89 پیام نور پاسخنامه تشریحی ریاضی عمومی ریاضی 1 مدیر... بازدید (20028)
نام درس : ر یاضیات و کاربرد آن در مدیریت...
پاسخ تشریحی نمونه سوال ریاضی هشتم خرداد ۱۳۹۶ قزوین پاسخ تشریحی نمونه سوال ریاضی هشتم خرداد ... بازدید (10030)
پاسخ تشریحی نمونه سوال ریاضی هشتم خرداد ...
مقدمه و فهرست مطالب آنالیز عددی 1 کرایه چیان مقدمه و فهرست مطالب آنالیز عددی 1 کرایه ... بازدید (20475)
مقدمه و فهرست مطالب کتاب آنالیز عددی 1 د...
 جزوه احتمال دکتر خزایی دانشگاه صنعتی شریف ترم اول 1396 جزوه احتمال دکتر خزایی دانشگاه صنعتی شر... بازدید (15659)
جزوه احتمال دکتر خزایی دانشگاه صنعتی شر...
دو فصل اول کتاب خودآموز سریع متلب (MATLAB) استاد مس فروش دو فصل اول کتاب خودآموز سریع متلب (MATLA... بازدید (6678)
مقدمه و فهرست مطالب به همراه دو فصل اول ...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (89519)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41894)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (41372)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38885)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (36049)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
17292490

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا