ویژگی‌های ماتریس پایین مثلثی

مقطع تحصیلی: عمومی
غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

وبژگی‌های ماتریس پایین مثلثی: در این مطلب سعی داریم، ویژگی‌های اساسی که بر روی ماتریس‌های پایین مثلثی برقرار می‌باشد، را بیان کنیم.

ویژگی ۱. فرض کنید \(A\) یک ماتریس پایین مثلثی از مرتبه \(n \times n\) باشد. \( \lambda \) یک اسکالر از میدان است. در اینصورت \( \lambda A\) هم یک ماتریس پایین مثلثی خواهد بود.

مثال ۱. فرض کنید که \(A\) یک ماتریس تعریف شده به صورت زیر و \( \lambda = 2i\) یک اسکالر از میدان باشد. در اینصورت \( \lambda A \) را محاسبه کرده و نوع این ماتریس را بیان کنید؟

\( A = \begin{bmatrix}0 & 0 & 0 \\1 & i & 0 \\ 2 & i+1 & 5i \end{bmatrix}  ⇒  \lambda A =2iA = \begin{bmatrix}0 & 0 & 0 \\ 2i & -2 & 0 \\ 4i & -2 + 2i & -10 \end{bmatrix} \)

همانطور که مشاهده می‌کنید، ماتریس حاصل شده باز هم یک ماتریس پایین مثلثی است، زیرا تمام درایه‌های بالای قطر اصلی آن صفر می‌باشند.


ویژگی ۲. فرض کنید که A و B دو ماتریس پایین مثلثی باشند. در اینصورت \(A+B\) یک ماتریس پایین مثلثی است.

مثال ۲. فرض کنید که A و B دو ماتریس پایین مثلثی تعریف شده به صورت زیر باشند. همچنین اسکالر \( \lambda = i\) را در نظر بگیرید. در اینصورت \( \lambda (A+B)\) را محاسبه کنید.

\( A = \begin{bmatrix}0 & 0 & 0 \\1 & 2 & 0 \\ 5 & 3 & 1 \end{bmatrix} \)

\( B = \begin{bmatrix}i & 0 & 0 \\i+1 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} \)

\( A+B = \begin{bmatrix}i & 0 & 0 \\i+2 & 2 & 0 \\ 7 & 3 & 2 \end{bmatrix}  ⇒ \lambda (A+B)= i(A+B) = \begin{bmatrix}-1 & 0 & 0 \\-1+2i & 2i & 0 \\ 7i & 3i & 2i \end{bmatrix} \)

همانطور که مشاهده می‌کنید، ماتریس \(\lambda (A+B)\) باز هم یک ماتریس پايین مثلثی را تشکیل می‌دهد، چون درایه‌های بالای قطر اصلی آن صفر است.


ویژگی ۳. فرض کنید که A و B دو ماتریس پایین مثلثی هم مرتبه باشند. در اینصورت AB یک ماتریس پایین مثلثی خواهد بود.

مثال ۳. فرض کنید که  A و B دو ماتریس پایین مثلثی هم مرتبه که به صورت زیر تعریف شده است، باشند. در اینصورت \(AB\) را محاسبه کنید.

\( A = \begin{bmatrix}0 & 0 & 0 \\1 & 2 & 0 \\ 5 & 3 & 1 \end{bmatrix} , \:\:\: B = \begin{bmatrix}i & 0 & 0 \\i+1 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} \)

⇒ \( AB = \begin{bmatrix}0 & 0 & 0 \\1 & 2 & 0 \\ 5 & 3 & 1 \end{bmatrix} \begin{bmatrix}i & 0 & 0 \\i+1 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix}0 & 0 & 0 \\2 & 0 & 0 \\ 7 & 3 & 0 \end{bmatrix} \)

همانطور که مشاهده می‌کنید حاصلضرب این دو ماتریس پایین مثلثی باز هم یک ماتریس پایین مثلثی خواهد بود.


ویژگی ۴. فرض کنید که A و B دو ماتریس پایین مثلثی هم مرتبه باشند. در اینصورت لزوما \(AB = BA\) نمی‌باشد.

تمرین ۱.  دو ماتریس پایین مثلثی مثال بزنید که نشان دهد لزوما \(AB = BA\) نخواهد بود.


ویژگی ۵. مجموعه تمام ماتریس‌های پایین مثلثی \( n\times n\) بر روی میدان \(F\) یک زیرحلقه از مجموعه تمام ماتریسهای \( n\times n\) بر روی همان میدان می‌باشد.

تمرین ۲. ویژگی‌ ۵ را ثابت کنید.

نظرات (0)

امتیاز 0 از 5 از بین 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (463)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (473)
فایل word نمونه سوال ریاضی پایه ششم فصل ...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ بازدید (565)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ بازدید (479)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ بازدید (486)
پاسخ تشریحی نمونه سوالات میانترم ریاضی م...

فایل های تصادفی

نمونه سوال ریاضی پایه هفتم فصل چهارم هندسه و استدلال- فایل word  شماره ۱ نمونه سوال ریاضی پایه هفتم فصل چهارم هند... بازدید (3838)
نمونه سوال ریاضی پایه هفتم فصل چهارم هند...
پاسخنامه آزمون میانترم معادلات دیفرانسیل دانشگاه شاهرود 13950824 پاسخنامه آزمون میانترم معادلات دیفرانسیل... بازدید (19386)
پاسخ آزمون میانترم معادلات دیفرانسیل دان...
پاسخ تشریحی پایانترم معادلات دیفرانسیل امیرکبیر 13931102 پاسخ تشریحی پایانترم معادلات دیفرانسیل ا... بازدید (16997)
پاسخ تشریحی پایانترم معادلات دیفرانسیل ا...
An improved generalized F-expansion method and its applications An improved generalized F-expansion meth... بازدید (21352)
M.A. abdu .An improved generalized F-exp...
Cambridge International AS and A Level Mathematics May June 2022 9709-2 With Solution Cambridge International AS and A Level M... بازدید (1263)
Cambridge International AS and A Level ...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (89519)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41894)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (41372)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38885)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (36049)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
17292470

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا