تابع دوسویی

مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

تعریف تابع دوسویی: تابع ‎\(‎‎‎‎f: A \rightarrow B \)‎ ‏را در نظر بگیرید. این تابع را دوسویی گویند هرگاه در شرایط زیر صدق نماید:

۱. تابع f‎‎‎‎ یک‎ به یک باشد.

۲. تابع f‎ ‎‏‎‎‎‏ پوشا باشد.

اکنون با توجه به تعریف یک به یکی، پوشایی و دوسویی ، چهار حالت برای توابع می‌توان در نظر گرفت که در زیر هر کدام را با شکل مشاهده می‌نمایید:

۱. تابعی که یک به یک و ‎پوشا‎ نباشد.

۲. تابعی یک به یک باشد ولی ‎‎‏پوشا‎ نباشد.

۳. تابعی یک به یک نباشد ولی ‎‏پوشا‎‎ باشد. 

۴. تابعی یک به یک و‎‎‎‏ پوشا باشد.


مثال۱. دوسویی بودن تابع زیر را بررسی کنید.

۱. ‎\(f(x)=\frac{x+1}{x+2}\)‎‎

برای بررسی دوسویی بودن تابع f‎ ‎ ‏  کافی‎ است یک به یک بودن و پوشا بودن تابع مورد نظر را به دست بیاوریم. خوب است بدانیم که دامنه تابع f‎‏‎‎ بازه ‎R-{2}‎ ‏‎‎را‎ شامل می‌شود‎‎‎‎. برای اثبات یک به یک بودن تابع f‎ ‎‎‏ طبق تعریف یک به یکی عمل می‌کنیم داریم:

\(‎‎\forall x , y ‎\in D_f , f(x) =f(y) ‎\rightarrow ‎x=y‎‎‎‎‎‎\)‎

‎\(‎‎\frac{x+1}{x+2} = \frac{y+1}{y+2}‎\)‎‎

‎\(‎‎xy + 2x + y + 2 = ‎xy + x + 2y + 2‎‎‎‎‎\)‎

‏حال‎ از طرفین تساوی عبارت‌های مشترک را حذف می‌کنیم‏، لذا ‎\(‎x=y‎‎‎‎\)‎ را خواهیم داشت. حال کافی است برای اثبات دوسویی‏، پوشا بودن را مورد محاسبه قرار دهیم. برای این منظور دوباره از تعریف ریاضی پوشا بودن استفاده می‌کنیم و بررسی می‌کنیم که در حدود دامنه تابع مورد نظر پوشاست یا خیر. 

\(‎‎\forall y ‎\in ‎R‎_f , \exists x\in D_f \rightarrow f(x)=y‎‎‎‎‎‎\)‎

‎\(‎‎\frac{x+1}{x+2}=y ‎\rightarrow ‎xy+2y=x+1 ‎‎\rightarrow ‎x=‎\frac{2y-1}{1-y}‎‎‎‎‎\)‎

‏از اینجا نتیجه می‌گیریم که برد تابع f‎‏ ‎‎بازه \( ‎R-{1}\)‎ را شامل می‌شود. در نتیجه اگر ضابطه‎‎‎ تابع به صورت‌های زیر باشد داریم:

۱.‎ \(‎f:R-{2}‎\rightarrow ‎R‎\)‎‎

در‎ این صورت مقدار تابع f‎ ‏‎ ‎به‎ ازای هیچ نقطه‌ای در دامنه مقدار یک نخواهد شد در نتیجه تابع پوشا نخواهد بود‏، زیرا نقطه‌ای در برد تابع ‎ f‎‏یافتیم که مقداری برای آن در دامنه موجود نیست. حال اگر ضابطه تابع f‎‏ ‎‎به‎ صورت زیر باشد:

۲.‎ \(‎f:R-{2}‎\rightarrow ‎R-‎{1}‎‎\)‎‎‎‎

‎‏در اینصورت تابع f‎‏ ‎‎یک‎ به یک و پوشا خواهد شد. پس در نتیجه f‎ ‎‎ دوسویی است. 


تمرین ۱. دوسویی بودن توابع زیر را بررسی کنید. 

۱. ‎‎\(f(x) = ‎\frac{x^2 + x}{x^2 + 5x}‎ ‎‎\)‎

۲. ‎\(‎g(x) =‎\sqrt{x^2 -1}‎‎\)‎

۳. ‎‎‎\(‎h(x)=[x]‎\)‎

۴.‎ \(k(x) ‎=x sgn(x)‎‎\)‎

نظرات (0)

امتیاز 0 از 5 از بین 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (463)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (473)
فایل word نمونه سوال ریاضی پایه ششم فصل ...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ بازدید (566)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ بازدید (480)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ بازدید (487)
پاسخ تشریحی نمونه سوالات میانترم ریاضی م...

فایل های تصادفی

 حل تمرین کتاب ریاضی عمومی یک دکتر کرایه چیان: فصل پنجم حل تمرین کتاب ریاضی عمومی یک دکتر کرایه... بازدید (6249)
حل کلیه تمرینهای فصل پنجم انتگرال کتاب ر...
پاسخ تشریحی میانترم ریاضی عمومی یک صنعتی شریف 13950918 پاسخ تشریحی میانترم ریاضی عمومی یک صنعتی... بازدید (19046)
پاسخ تشریحی میانترم ریاضی عمومی یک دانشگ...
پاسخ تشریحی پایان ترم معادلات دیفرانسیل صنعتی امیرکبیر دی ماه 1382 پاسخ تشریحی پایان ترم معادلات دیفرانسیل ... بازدید (16385)
جواب تشریحی کامل پایان ترم معادلات دیفرا...
شمردنی ها را بشمار، دکتر میرزاوزیری شمردنی ها را بشمار، دکتر میرزاوزیری... بازدید (11518)
نسخه پی دی اف کتاب شمردنی ها را بشمار دک...
پاسخنامه آزمون پایان ترم معادلات دیفرانسیل دانشگاه شاهرود ده گروه هماهنگ 13870321 پاسخنامه آزمون پایان ترم معادلات دیفرانس... بازدید (16043)
پاسخ آزمون پایان ترم معادلات دیفرانسیل د...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (89521)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41896)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (41373)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38885)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (36049)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
17294521

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا