پایان ترم آنالیز حقیقی ۱ امیر کی کتر حاتم مورخ ۱۳۸۸۱۰۱۴

In the name of the Almighty Allah

Final exam - Real Analysis 1 The Amirkabir University 14/10/89 Time: 3 hrs.

Over all the following questions μ and ϕ are positive measures on a σ -algebra $\mathfrak M$ in a set X.

- 1. Show that if M is infinite, then M is uncountable.
- 2. If $a_{ij} \geq 0$ for i, j = 1, 2, ..., apply the Fubini's Theorem 8.8 to deduce

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

- 3. Let X be a topological space and $\{\psi_{\alpha}, \alpha \in A\}$ be a family of lower semicontinuous functions on X. Show that the function $g(x) = \sup \psi_{\alpha}(x)$ is also lower
- 18-den 4. For $0 define <math>\underline{d(f,g)} = \int_X |f|^p d\mu$. Prove that d is a metric on $L^p(\mu)$. (Hint: Use decreasing function $g(x) = (1+x)^p - x^p$.)
- (5.) Let $h \rightarrow [0, \infty]$ be a measurable function, if $\mu(X) = 1$, set $A = \int_X h d\mu$, use Theorem 3.3 to prove that: $\sqrt{1+A^2} \le \int_X \sqrt{1+h^2} d\mu \le 1+A$.
 - prove that μ is σ-finite if and only if there exists a positive function f ∈ L¹(μ).
 - 7. If $f \in L^1(\mu) \cap L^{\infty}(\mu)$, then show that,
 - (a) $f \in L^p(\mu)$ holds for every 1 .
 - (b) If μ is finite measure then $\lim ||f||_p = ||f||_{\infty}$.
 - (c) If μ is finite measure and if 1 q</sup>(μ) ⊂ L^p(μ).
 - 8. Let L be a nonzero continuous linear functional on H and $M = \{x : Lx = 0\}$. Prove that M^{\perp} is a vector space of dimension 1. (Hint: Use Theorem 4.11.)
 - 9. Let $T:(C[0,1];\|.\|_{\infty})\to (C[0,1];\|.\|_{\infty})$ be a linear operator defined by $(Tf)(x) = x^3 f(x)$. Show that T is bounded and ||I + T|| = 1 + ||T||. (Hint: Use function f = 1 to obtain that ||T|| = 1.)
- 10. If μ and ϕ are finite measures and $\mu(E) \le \phi(E)$ holds for every measurable set $E \in \mathfrak{M}$ and if $f \in L^2(\phi)$, then, prove that there exists a unique measurable $g:X \to [0,1]$ with respect to ϕ such that $\int_X f d\mu = \int_X f g d\phi$. (Hint: Define linear functional $T(f) = \int_X f d\mu$ on Hilbert space $L^2(\phi)$ and use both theorems دانلود کتاب، جزوه و مقاله تخصصی ریاضی در 1.40 and 4.12)

سایت زیاضیات ایران

Good luck A

بزرگترین سایت ریاضی